Bioelectrodegradation of Hazardous Organic Contaminants from Industrial Wastewater

  • Xinbai Jiang
  • Jinyou Shen
  • Yang Mu
  • Libin Zhang
  • Lianjun Wang


Hazardous organic contaminants tend to accumulate in the industrial effluents due to their recalcitrant properties. Approaches used for the hazardous contaminants removal always encounter conflicts between treatment efficiency and economic efficiency. Bioelectrochemical system (BES) is an attractive new type of wastewater treatment technology, which is versatile with the advantages of low energy demand, less sludge production, and synchronous resource recovery. Electrons microbially generated from the anode of BES enable bioremediation processes for removing persistent pollutants in wastewater. Highly oxidized hazardous organic contaminants could be efficiently reduced at abiotic/biocathode driven by bioanodes. This review summarized a series of typical hazardous organic pollutants transformation or degradation in BESs from the views of process operation, functional bacteria, and mechanisms. In addition, as an extent of anaerobic technology, BES coupling with traditional anaerobic process is considered as a promising way to achieve energy-efficient wastewater treatment and deliver scaled-up applications of BESs. Moreover, the main hurdles and future perspectives as well as potential future research are discussed.


Bioelectrochemical systems (BESs) Hazardous organic contaminants Bioelectrodegradation Anaerobic process Integration process 


  1. 1.
    Kang JW (2014) Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnol Lett 36(6):1129–1139CrossRefGoogle Scholar
  2. 2.
    Mahlambi MM, Ngila CJ, Mamba BB (2015) Recent developments in environmental photocatalytic degradation of organic pollutants: the case of titanium dioxide nanoparticles—a review. J Nanomater 2015:1–29CrossRefGoogle Scholar
  3. 3.
    Feng H, Zhang X, Liang Y, Wang M, Shen D, Ding Y, Huang B, Shentu J (2014) Enhanced removal of p-fluoronitrobenzene using bioelectrochemical system. Water Res 60:54–63CrossRefGoogle Scholar
  4. 4.
    Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101(6):1533–1543CrossRefGoogle Scholar
  5. 5.
    Santoro C, Arbizzani C, Erable B, Ieropoulos I (2017) Microbial fuel cells: from fundamentals to applications. A review. J Power Sources 356:225–244CrossRefGoogle Scholar
  6. 6.
    Butti SK, Velvizhi G, Sulonen MLK, Haavisto JM, Oguz Koroglu E, Yusuf Cetinkaya A, Singh S, Arya D, Annie Modestra J, Vamsi Krishna K, Verma A, Ozkaya B, Lakaniemi A-M, Puhakka JA, Venkata Mohan S (2016) Microbial electrochemical technologies with the perspective of harnessing bioenergy: maneuvering towards upscaling. Renew Sust Energ Rev 53:462–476CrossRefGoogle Scholar
  7. 7.
    Zhang Q, Hu J, Lee D-J (2016) Microbial fuel cells as pollutant treatment units: research updates. Bioresour Technol 217:121–128CrossRefGoogle Scholar
  8. 8.
    Zhang Y, Angelidaki I (2014) Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges. Water Res 56:11–25CrossRefGoogle Scholar
  9. 9.
    Zhen G, Lu X, Kumar G, Bakonyi P, Xu K, Zhao Y (2017) Microbial electrolysis cell platform for simultaneous waste biorefinery and clean electrofuels generation: current situation, challenges and future perspectives. Prog Energ Combust 63:119–145CrossRefGoogle Scholar
  10. 10.
    Liang B, Cheng HY, Kong DY, Gao SH, Sun F, Cui D, Kong FY, Zhou AJ, Liu WZ, Ren NQ, Wu WM, Wang AJ, Lee DJ (2013) Accelerated reduction of chlorinated nitroaromatic antibiotic chloramphenicol by biocathode. Environ Sci Technol 47(10):5353–5361CrossRefGoogle Scholar
  11. 11.
    Yun H, Liang B, Kong DY, Cheng HY, Li ZL, Gu YB, Yin HQ, Wang AJ (2017) Polarity inversion of bioanode for biocathodic reduction of aromatic pollutants. J Hazard Mater 331:280–288CrossRefGoogle Scholar
  12. 12.
    Cui D, Cui M-H, Lee H-S, Liang B, Wang H-C, Cai W-W, Cheng H-Y, Zhuang X-L, Wang A-J (2017) Comprehensive study on hybrid anaerobic reactor built-in with sleeve type bioelectrocatalyzed modules. Chem Eng J.
  13. 13.
    Kaiser JP, Feng Y, Bollag JM (1996) Microbial metabolism of pyridine, quinoline, acridine, and their derivatives under aerobic and anaerobic conditions. Microbiol Rev 60(3):483–498Google Scholar
  14. 14.
    Hu W-J, Niu C-G, Wang Y, Zeng G-M, Wu Z (2011) Nitrogenous heterocyclic compounds degradation in the microbial fuel cells. Process Saf Environ 89(2):133–140CrossRefGoogle Scholar
  15. 15.
    Zhang C, Li M, Liu G, Luo H, Zhang R (2009) Pyridine degradation in the microbial fuel cells. J Hazard Mater 172(1):465–471CrossRefGoogle Scholar
  16. 16.
    Zhang C, Liu G, Zhang R, Luo H (2010) Electricity production from and biodegradation of quinoline in the microbial fuel cell. J Environ Sci Health A Toxic/Hazard Subst Environ Eng 45(2):250–256CrossRefGoogle Scholar
  17. 17.
    Rezaei F, Xing D, Wagner R, Regan JM, Richard TL, Logan BE (2009) Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl Environ Microbiol 75(11):3673–3678CrossRefGoogle Scholar
  18. 18.
    Jiang X, Shen J, Xu K, Chen D, Mu Y, Sun X, Han W, Li J, Wang L (2017) Substantial enhancement of anaerobic pyridine bio-mineralization by electrical stimulation. Water Res 130:291–299CrossRefGoogle Scholar
  19. 19.
    Wu Z, Webley PA, Zhao D (2010) Comprehensive study of pore evolution, mesostructural stability, and simultaneous surface functionalization of ordered mesoporous carbon (FDU-15) by wet oxidation as a promising adsorbent. Langmuir 26(12):10277–10286CrossRefGoogle Scholar
  20. 20.
    Zhang T, Gannon SM, Nevin KP, Franks AE, Lovley DR (2010) Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environ Microbiol 12(4):1011–1020CrossRefGoogle Scholar
  21. 21.
    Britto JM, Oliveira SB, Rabelo D, Rangel MC (2008) Catalytic wet peroxide oxidation of phenol from industrial wastewater on activated carbon. Catal Today 133–135:582–587CrossRefGoogle Scholar
  22. 22.
    Fu F, Dionysiou DD, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267:194–205CrossRefGoogle Scholar
  23. 23.
    Li J, Li M, Zhang J, Ye D, Zhu X, Liao Q (2013) A microbial fuel cell capable of converting gaseous toluene to electricity. Biochem Eng J 75:39–46CrossRefGoogle Scholar
  24. 24.
    Song TS, Wu XY, Zhou CC (2014) Effect of different acclimation methods on the performance of microbial fuel cells using phenol as substrate. Bioprocess Biosyst Eng 37(2):133–138CrossRefGoogle Scholar
  25. 25.
    Alshehri ANZ (2015) Employment of microbial fuel cell technology to biodegrade naphthalene and benzidine for bioelectricity generation. Int J Curr Microbiol App Sci 4(1):134–149Google Scholar
  26. 26.
    Wu CH, Yet-Pole I, Chiu YH, Lin CW (2014) Enhancement of power generation by toluene biodegradation in a microbial fuel cell in the presence of pyocyanin. J Taiwan Inst Chem E 45(5):2319–2324CrossRefGoogle Scholar
  27. 27.
    Cheng HY, Liang B, Mu Y, Cui MH, Li K, Wu WM, Wang AJ (2015) Stimulation of oxygen to bioanode for energy recovery from recalcitrant organic matter aniline in microbial fuel cells (MFCs). Water Res 81:72–83CrossRefGoogle Scholar
  28. 28.
    Friman H, Schechter A, Ioffe Y, Nitzan Y, Cahan R (2013) Current production in a microbial fuel cell using a pure culture of Cupriavidus basilensis growing in acetate or phenol as a carbon source. Microb Biotechnol 6(4):425–434CrossRefGoogle Scholar
  29. 29.
    Husain Q (2010) Peroxidase mediated decolorization and remediation of wastewater containing industrial dyes: a review. Rev Environ Sci Biotechnol 9(2):117–140CrossRefGoogle Scholar
  30. 30.
    Fang Z, Song HL, Cang N, Li XN (2015) Electricity production from Azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions. Biosens Bioelectron 68(68):135–141CrossRefGoogle Scholar
  31. 31.
    Sun J, Hu YY, Bi Z, Cao YQ (2009) Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell. Bioresour Technol 100(13):3185–3192CrossRefGoogle Scholar
  32. 32.
    Wen Q, Kong F, Zheng H, Cao D, Ren Y, Yin J (2011) Electricity generation from synthetic penicillin wastewater in an air-cathode single chamber microbial fuel cell. Chem Eng J 168(2):572–576CrossRefGoogle Scholar
  33. 33.
    Wang L, Liu Y, Ma J, Zhao F (2016) Rapid degradation of sulphamethoxazole and the further transformation of 3-amino-5-methylisoxazole in a microbial fuel cell. Water Res 88:322–328CrossRefGoogle Scholar
  34. 34.
    Zhang Q, Zhang Y, Li D (2017) Cometabolic degradation of chloramphenicol via a meta-cleavage pathway in a microbial fuel cell and its microbial community. Bioresour Technol 229:104–110CrossRefGoogle Scholar
  35. 35.
    Liu R, Gao C, Zhao YG, Wang A, Lu S, Wang M, Maqbool F, Huang Q (2012) Biological treatment of steroidal drug industrial effluent and electricity generation in the microbial fuel cells. Bioresour Technol 123:86–91CrossRefGoogle Scholar
  36. 36.
    Marashi SK, Kariminia HR, Savizi IS (2013) Bimodal electricity generation and aromatic compounds removal from purified terephthalic acid plant wastewater in a microbial fuel cell. Biotechnol Lett 35(2):197–203CrossRefGoogle Scholar
  37. 37.
    Chandrasekhar K, Venkata Mohan S (2012) Bio-electrochemical remediation of real field petroleum sludge as an electron donor with simultaneous power generation facilitates biotransformation of PAH: effect of substrate concentration. Bioresour Technol 110:517–525CrossRefGoogle Scholar
  38. 38.
    Clauwaert P, van der Ha D, Verstraete W (2008) Energy recovery from energy rich vegetable products with microbial fuel cells. Biotechnol Lett 30(11):1947–1951CrossRefGoogle Scholar
  39. 39.
    Feng Y, Yang Q, Wang X, Liu Y, Lee H, Ren N (2011) Treatment of biodiesel production wastes with simultaneous electricity generation using a single-chamber microbial fuel cell. Bioresour Technol 102(1):411–415CrossRefGoogle Scholar
  40. 40.
    Kassongo J, Togo CA (2013) Evaluation of full-strength paper mill effluent for electricity generation in mediator-less microbial fuel cells. Afr J Biotechnol 10(69):15564–15570Google Scholar
  41. 41.
    Cheng S, Kiely P, Logan BE (2011) Pre-acclimation of a wastewater inoculum to cellulose in an aqueous-cathode MEC improves power generation in air-cathode MFCs. Bioresour Technol 102(1):367–371CrossRefGoogle Scholar
  42. 42.
    Strycharz SM, Gannon SM, Boles AR, Franks AE, Nevin KP, Lovley DR (2010) Reductive dechlorination of 2-chlorophenol by Anaeromyxobacter dehalogenans with an electrode serving as the electron donor. Environ Microbiol Rep 2(2):289–294CrossRefGoogle Scholar
  43. 43.
    Wang H, Luo H, Fallgren PH, Jin S, Ren ZJ (2015) Bioelectrochemical system platform for sustainable environmental remediation and energy generation. Biotechnol Adv 33(3–4):317–334CrossRefGoogle Scholar
  44. 44.
    Mu Y, Rabaey K, Rozendal RA, Yuan Z, Keller J (2009) Decolorization of azo dyes in bioelectrochemical systems. Environ Sci Technol 43(13):5137–5143CrossRefGoogle Scholar
  45. 45.
    Liu L, Li FB, Feng CH, Li XZ (2009) Microbial fuel cell with an azo-dye-feeding cathode. Appl Microbiol Biotechnol 85(1):175–183CrossRefGoogle Scholar
  46. 46.
    Mu Y, Rozendal RA, Rabaey K, Keller J (2009) Nitrobenzene removal in bioelectrochemical systems. Environ Sci Technol 43(22):8690–8695CrossRefGoogle Scholar
  47. 47.
    Shen J, Feng C, Zhang Y, Jia F, Sun X, Li J, Han W, Wang L, Mu Y (2012) Bioelectrochemical system for recalcitrant p-nitrophenol removal. J Hazard Mater 209–210:516–519CrossRefGoogle Scholar
  48. 48.
    Shen J, Zhang Y, Xu X, Hua C, Sun X, Li J, Mu Y, Wang L (2013) Role of molecular structure on bioelectrochemical reduction of mononitrophenols from wastewater. Water Res 47(15):5511–5519CrossRefGoogle Scholar
  49. 49.
    Haggblom MM, Knight VK, Kerkhof LJ (2000) Anaerobic decomposition of halogenated aromatic compounds. Environ Pollut 107(2):199–207CrossRefGoogle Scholar
  50. 50.
    Ghattas AK, Fischer F, Wick A, Ternes TA (2017) Anaerobic biodegradation of (emerging) organic contaminants in the aquatic environment. Water Res 116:268–295CrossRefGoogle Scholar
  51. 51.
    Hennebel T, Benner J, Clauwaert P, Vanhaecke L, Aelterman P, Callebaut R, Boon N, Verstraete W (2011) Dehalogenation of environmental pollutants in microbial electrolysis cells with biogenic palladium nanoparticles. Biotechnol Lett 33(1):89–95CrossRefGoogle Scholar
  52. 52.
    Mu Y, Radjenovic J, Shen J, Rozendal RA, Rabaey K, Keller J (2010) Dehalogenation of iodinated X-ray contrast media in a bioelectrochemical system. Environ Sci Technol 45(2):782–788CrossRefGoogle Scholar
  53. 53.
    De GB, Hennebel T, Vanhaecke L, Soetaert M, Desloover J, Wille K, Verbeken K, Verstraete W, Boon N (2011) Biogenic palladium enhances diatrizoate removal from hospital wastewater in a microbial electrolysis cell. Environ Sci Technol 45(13):5737–5745CrossRefGoogle Scholar
  54. 54.
    Kong D, Liang B, Yun H, Cheng H, Ma J, Cui M, Wang A, Ren N (2015) Cathodic degradation of antibiotics: characterization and pathway analysis. Water Res 72:281–292CrossRefGoogle Scholar
  55. 55.
    Chen GW, Choi SJ, Lee TH, Lee GY, Cha JH, Kim CW (2008) Application of biocathode in microbial fuel cells: cell performance and microbial community. Appl Microbiol Biotechnol 79(3):379–388CrossRefGoogle Scholar
  56. 56.
    Cardenas-Robles A, Martinez E, Rendon-Alcantar I, Frontana C, Gonzalez-Gutierrez L (2013) Development of an activated carbon-packed microbial bioelectrochemical system for azo dye degradation. Bioresour Technol 127:37–43CrossRefGoogle Scholar
  57. 57.
    Liu S, Song H, Wei S, Liu Q, Li X, Qian X (2015) Effect of direct electrical stimulation on decolorization and degradation of azo dye reactive brilliant red X-3B in biofilm-electrode reactors. Biochem Eng J 93:294–302CrossRefGoogle Scholar
  58. 58.
    Kong F, Wang A, Liang B, Liu W, Cheng H (2013) Improved azo dye decolorization in a modified sleeve-type bioelectrochemical system. Bioresour Technol 143:669–673CrossRefGoogle Scholar
  59. 59.
    Gao S-H, Peng L, Liu Y, Zhou X, Ni B-J, Bond PL, Liang B, Wang A-J (2016) Bioelectrochemical reduction of an azo dye by a Shewanella oneidensis MR-1 formed biocathode. Int Biodeterior Biodegrad 115(Supplement C):250–256CrossRefGoogle Scholar
  60. 60.
    Wang HC, Cheng HY, Cui D, Zhang B, Wang SS, Han JL, Su SG, Chen R, Wang AJ (2017) Corrugated stainless-steel mesh as a simple engineerable electrode module in bio-electrochemical system: hydrodynamics and the effects on decolorization performance. J Hazard Mater 338:287–295CrossRefGoogle Scholar
  61. 61.
    Wang HC, Cui D, Yang LH, Ding YC, Cheng HY, Wang AJ (2017) Increasing the bio-electrochemical system performance in azo dye wastewater treatment: reduced electrode spacing for improved hydrodynamics. Bioresour Technol 245:962–969CrossRefGoogle Scholar
  62. 62.
    Wang AJ, Cheng HY, Liang B, Ren NQ, Cui D, Lin N, Kim BH, Rabaey K (2011) Efficient reduction of nitrobenzene to aniline with a biocatalyzed cathode. Environ Sci Technol 45(23):10186–10193CrossRefGoogle Scholar
  63. 63.
    Wang A-J, Cui D, Cheng H-Y, Guo Y-Q, Kong F-Y, Ren N-Q, Wu W-M (2012) A membrane-free, continuously feeding, single chamber up-flow biocatalyzed electrolysis reactor for nitrobenzene reduction. J Hazard Mater 199–200:401–409CrossRefGoogle Scholar
  64. 64.
    Wang X, Xing D, Ren N (2016) p-Nitrophenol degradation and microbial community structure in a biocathode bioelectrochemical system. RSC Adv 6(92):89821–89826CrossRefGoogle Scholar
  65. 65.
    Liang B, Cheng H, Van Nostrand JD, Ma J, Yu H, Kong D, Liu W, Ren N, Wu L, Wang A, Lee DJ, Zhou J (2014) Microbial community structure and function of nitrobenzene reduction biocathode in response to carbon source switchover. Water Res 54:137–148CrossRefGoogle Scholar
  66. 66.
    Sun F, Liu H, Liang B, Song R, Yan Q, Wang A (2013) Reductive degradation of chloramphenicol using bioelectrochemical system (BES): a comparative study of abiotic cathode and biocathode. Bioresour Technol 143:699–702CrossRefGoogle Scholar
  67. 67.
    Liang B, Kong D, Ma J, Wen C, Yuan T, Lee DJ, Zhou J, Wang A (2016) Low temperature acclimation with electrical stimulation enhance the biocathode functioning stability for antibiotics detoxification. Water Res 100:157–168CrossRefGoogle Scholar
  68. 68.
    Aulenta F, Catervi A, Majone M, Panero S, Reale P, Rossetti S (2007) Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE. Environ Sci Technol 41(7):2554–2559CrossRefGoogle Scholar
  69. 69.
    Strycharz SM, Woodard TL, Johnson JP, Nevin KP, Sanford RA, Löffler FE, Lovley DR (2008) Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi. Appl Environ Microbiol 74(19):5943–5947CrossRefGoogle Scholar
  70. 70.
    Cui D, Guo YQ, Cheng HY, Liang B, Kong FY, Lee HS, Wang AJ (2012) Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor. J Hazard Mater 239–240:257–264CrossRefGoogle Scholar
  71. 71.
    Deng Q, Li X, Zuo J, Ling A, Logan BE (2010) Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell. J Power Sources 195(4):1130–1135CrossRefGoogle Scholar
  72. 72.
    Chun CL, Payne RB, Sowers KR, May HD (2013) Electrical stimulation of microbial PCB degradation in sediment. Water Res 47(1):141–152CrossRefGoogle Scholar
  73. 73.
    Jiang X, Shen J, Lou S, Mu Y, Wang N, Han W, Sun X, Li J, Wang L (2016) Comprehensive comparison of bacterial communities in a membrane-free bioelectrochemical system for removing different mononitrophenols from wastewater. Bioresour Technol 216:645–652CrossRefGoogle Scholar
  74. 74.
    Jiang X, Shen J, Han Y, Lou S, Han W, Sun X, Li J, Mu Y, Wang L (2016) Efficient nitro reduction and dechlorination of 2,4-dinitrochlorobenzene through the integration of bioelectrochemical system into upflow anaerobic sludge blanket: a comprehensive study. Water Res 88:257–265CrossRefGoogle Scholar
  75. 75.
    Zhu L, Gao K, Qi J, Jin J, Xu X (2014) Enhanced reductive transformation of p-chloronitrobenzene in a novel bioelectrode–UASB coupled system. Bioresour Technol 167:303–309CrossRefGoogle Scholar
  76. 76.
    Kong F, Wang A, Ren HY (2014) Improved azo dye decolorization in an advanced integrated system of bioelectrochemical module with surrounding electrode deployment and anaerobic sludge reactor. Bioresour Technol 175C:624–628Google Scholar
  77. 77.
    Sukkasem C, Laehlah S, Hniman A, O’Thong S, Boonsawang P, Rarngnarong A, Nisoa M, Kirdtongmee P (2011) Upflow bio-filter circuit (UBFC): biocatalyst microbial fuel cell (MFC) configuration and application to biodiesel wastewater treatment. Bioresour Technol 102(22):10363–10370CrossRefGoogle Scholar
  78. 78.
    Virdis B, Rabaey K, Rozendal RA, Yuan Z, Keller J (2010) Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. Water Res 44(9):2970–2980CrossRefGoogle Scholar
  79. 79.
    Cha J, Choi S, Yu H, Kim H, Kim C (2010) Directly applicable microbial fuel cells in aeration tank for wastewater treatment. Bioelectrochemistry 78(1):72–79CrossRefGoogle Scholar
  80. 80.
    Liu XW, Wang YP, Huang YX, Sun XF, Sheng GP, Zeng RJ, Li F, Dong F, Wang SG, Tong ZH, Yu HQ (2011) Integration of a microbial fuel cell with activated sludge process for energy-saving wastewater treatment: taking a sequencing batch reactor as an example. Biotechnol Bioeng 108(6):1260–1267CrossRefGoogle Scholar
  81. 81.
    Yu CP, Liang Z, Das A, Hu Z (2011) Nitrogen removal from wastewater using membrane aerated microbial fuel cell techniques. Water Res 45(3):1157–1164CrossRefGoogle Scholar
  82. 82.
    Cheng KY, Ho G, Cord-Ruwisch R (2011) Novel methanogenic rotatable bioelectrochemical system operated with polarity inversion. Environ Sci Technol 45(2):796–802CrossRefGoogle Scholar
  83. 83.
    Ren L, Ahn Y, Logan BE (2014) A two-stage microbial fuel cell and anaerobic fluidized bed membrane bioreactor (MFC-AFMBR) system for effective domestic wastewater treatment. Environ Sci Technol 48(7):4199–4206CrossRefGoogle Scholar
  84. 84.
    Wang Y-P, Zhang H-L, Li W-W, Liu X-W, Sheng G-P, Yu H-Q (2014) Improving electricity generation and substrate removal of a MFC–SBR system through optimization of COD loading distribution. Biochem Eng J 85:15–20CrossRefGoogle Scholar
  85. 85.
    Zhang F, Ge Z, Grimaud J, Hurst J, He Z (2013) In situ investigation of tubular microbial fuel cells deployed in an aeration tank at a municipal wastewater treatment plant. Bioresour Technol 136:316–321CrossRefGoogle Scholar
  86. 86.
    Shen J, Xu X, Jiang X, Hua C, Zhang L, Sun X, Li J, Mu Y, Wang L (2014) Coupling of a bioelectrochemical system for p-nitrophenol removal in an upflow anaerobic sludge blanket reactor. Water Res 67C:11–18CrossRefGoogle Scholar
  87. 87.
    Cui D, Guo YQ, Lee HS, Wu WM, Liang B, Wang AJ, Cheng HY (2014) Enhanced decolorization of azo dye in a small pilot-scale anaerobic baffled reactor coupled with biocatalyzed electrolysis system (ABR-BES): a design suitable for scaling-up. Bioresour Technol 163:254–261CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Xinbai Jiang
    • 1
  • Jinyou Shen
    • 1
  • Yang Mu
    • 2
  • Libin Zhang
    • 1
  • Lianjun Wang
    • 1
  1. 1.Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingChina
  2. 2.CAS Key Laboratory of Urban Pollutant Conversion, Collaborative Innovation Centre of Suzhou Nano Science and Technology, Department of ChemistryUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations