Recovery of Metals from Wastes Using Bioelectrochemical Systems

  • Liping Huang
  • Qian Zhou
  • Xie Quan


Recovery of value-added metals from wastes using bioelectrochemical systems (BESs) has attracted much attention during the past 6–8 years due to the shortage of natural ores and environmental considerations. Present metallurgical BESs have been conducted with the aim either to increase the efficiency of metal recovery using these established BESs or to develop novel processes for broadening the applicable BESs for metal recovery. This review attempts to briefly summarize these recovery technologies, highlighting recent discoveries of recovering metals through BESs and discussing critically the effects of processes and design parameters on recovery rate. The metallurgical BES technologies are summarized based on the developments of two aspects, namely, abiotic cathodes and biocathodes, in the scientific literature. Future research needs that enable better understanding and optimization of the recovery efficiency of metallurgical BESs are outlined.


Bioelectrochemical system Microbial fuel cell Microbial electrolysis cell Metal recovery Biocathode Abiotic cathode 



We gratefully acknowledge financial support from the Natural Science Foundation of China (nos. 51578104, 21777017, and 21377019).


  1. 1.
    Xin B, Zhang D, Zhang X et al (2009) Bioleaching mechanism of Co Li from spent lithium-ion battery mixed culture acidophilic sulfur-oxidizing iron-oxidizing bacteria. Bioresour Technol 100:6163–6169CrossRefGoogle Scholar
  2. 2.
    Chen G (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38:11–41CrossRefGoogle Scholar
  3. 3.
    Rabaey K, Rozendal RA (2010) Microbial electrosynthesis-revisiting the electrical route for microbial production. Nat Rev Microbiol 8:706–716CrossRefGoogle Scholar
  4. 4.
    Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337:686–690CrossRefGoogle Scholar
  5. 5.
    Modin O, Wang X, Wu X et al (2012) Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions. J Hazard Mater 235:291–297CrossRefGoogle Scholar
  6. 6.
    Huang L, Yang X, Quan X et al (2010) A microbial fuel cell–electro-oxidation system for coking wastewater treatment and bioelectricity generation. J Chem Technol Biotechnol 85:621–627CrossRefGoogle Scholar
  7. 7.
    Huang L, Cheng S, Chen G (2011) Bioelectrochemical systems for efficient recalcitrant wastes treatment. J Chem Technol Biotechnol 86:481–491CrossRefGoogle Scholar
  8. 8.
    Kelly PT, He Z (2014) Nutrients removal and recovery in bioelectrochemical systems: a review. Bioresour Technol 153:351–360CrossRefGoogle Scholar
  9. 9.
    Wang H, Ren Z (2014) Bioelectrochemical metal recovery from wastewater: a review. Water Res 66:219–232CrossRefGoogle Scholar
  10. 10.
    Nancharaiah YV, Mohan SV, Lens PNL (2015) Metals removal and recovery in bioelectrochemical systems: a review. Bioresour Technol 195:102–114CrossRefGoogle Scholar
  11. 11.
    Nancharaiah YV, Mohan SV, Lens PNL (2016) Biological and bioelectrochemical recovery of critical and scarce metals. Trends Biotechnol 34:137–155CrossRefGoogle Scholar
  12. 12.
    Lu Z, Chang D, Ma J (2015) Behavior of metal ions in bioelectrochemical systems: a review. J Power Sources 275:243–260CrossRefGoogle Scholar
  13. 13.
    He C, Mu Z, Yang H et al (2015) Electron acceptors for energy generation in microbial fuel cells fed with wastewaters: a mini-review. Chemosphere 140:12–17CrossRefGoogle Scholar
  14. 14.
    Ter Heijne A, Liu F, van der Weijden R et al (2010) Copper recovery combined with electricity production in a microbial fuel cell. Environ Sci Technol 44:4376–4343CrossRefGoogle Scholar
  15. 15.
    Liu L, Yuan Y, Li F et al (2011) In-situ Cr(VI) reduction with electrogenerated hydrogen peroxide driven by iron-reducing bacteria. Bioresour Technol 102:2468–2473CrossRefGoogle Scholar
  16. 16.
    Pang Y, Xie D, Wu B et al (2013) Conductive polymer-mediated Cr(VI) reduction in a dual-chamber microbial fuel cell under neutral conditions. Synth Met 183:57–62CrossRefGoogle Scholar
  17. 17.
    Xafenias N, Zhang Y, Banks CJ (2013) Enhanced performance of hexavalent chromium reducing cathodes in the presence of Shewanella oneidensis MR-1 and lactate. Environ Sci Technol 47:4512–4520CrossRefGoogle Scholar
  18. 18.
    Wang Q, Huang L, Pan Y et al (2017) Impact of Fe(III) as an effective mediator for enhanced Cr(VI) reduction in microbial fuel cells: reduction of diffusional resistances and cathode overpotentials. J Hazard Mater 321:896–906CrossRefGoogle Scholar
  19. 19.
    Choi C, Cui Y (2012) Recovery of silver from wastewater coupled with power generation using a microbial fuel cell. Bioresour Technol 107:522–525CrossRefGoogle Scholar
  20. 20.
    Tao H, Gao Z, Ding H et al (2012) Recovery of silver from silver(I)-containing solutions in bioelectrochemical reactors. Bioresour Technol 111:522–525CrossRefGoogle Scholar
  21. 21.
    Choi C, Hu N (2013) The modeling of gold recovery from tetrachloroaurate wastewater using a microbial fuel cell. Bioresour Technol 133:589–598CrossRefGoogle Scholar
  22. 22.
    Wang G, Huang L, Zhang Y (2008) Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells. Biotechnol Lett 30:1959–1966CrossRefGoogle Scholar
  23. 23.
    Li Z, Zhang X, Lei L (2008) Electricity production during the treatment of real electroplating wastewater containing Cr(VI) using microbial fuel cell. Process Biochem 43:1352–1358CrossRefGoogle Scholar
  24. 24.
    Li Y, Lu A, Ding H et al (2009) Cr(VI) reduction at rutile-catalyzed cathode in microbial fuel cells. Electrochem Commun 11:1496–1499CrossRefGoogle Scholar
  25. 25.
    Tao H, Zhang L, Gao Z et al (2011) Copper reduction in a pilot-scale membrane-free bioelectrochemical reactor. Bioresour Technol 102:10334–10339CrossRefGoogle Scholar
  26. 26.
    Tao H, Li W, Liang M et al (2011) A membrane-free baffled microbial fuel cell for cathodic reduction of Cu(II) with electricity generation. Bioresour Technol 102:4774–4778CrossRefGoogle Scholar
  27. 27.
    Tao H, Liang M, Li W et al (2011) Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell. J Hazard Mater 189:186–192CrossRefGoogle Scholar
  28. 28.
    Zhang Q, Wei Z, Liu C et al (2012) Copper-doped cobalt oxide electrodes for oxygen evolution reaction prepared by magnetron sputtering. Int J Hydrog Energy 37:822–830CrossRefGoogle Scholar
  29. 29.
    Cheng S, Wang B, Wang Y (2013) Increasing efficiencies of microbial fuel cells for collaborative treatment of copper and organic wastewater by designing reactor and selecting operating parameters. Bioresour Technol 147:115–121CrossRefGoogle Scholar
  30. 30.
    An Z, Zhang H, Wen Q et al (2014) Desalination combined with copper(II) removal in a novel microbial desalination cell. Desalination 346:115–121CrossRefGoogle Scholar
  31. 31.
    Wu D, Huang L, Quan X et al (2016) Electricity generation and bivalent copper reduction as a function of operation time and cathode electrode material in microbial fuel cells. J Power Sources 307:705–714CrossRefGoogle Scholar
  32. 32.
    Wang Z, Lim B, Choi C (2011) Removal of Hg2+ as an electron acceptor coupled with power generation using a microbial fuel cell. Bioresour Technol 102:6304–6307CrossRefGoogle Scholar
  33. 33.
    You S, Zhao Q, Zhang J et al (2006) A microbial fuel cell using permanganate as the cathodic electron acceptor. J Power Sources 162:1409–1415CrossRefGoogle Scholar
  34. 34.
    Zhang B, Zhao H, Shi C et al (2009) Simultaneous removal of sulfide and organics with vanadium (V) reduction in microbial fuel cells. Technol Biotechnol 84:1780–1786CrossRefGoogle Scholar
  35. 35.
    Zhang B, Zhou S, Zhao H et al (2010) Factors affecting the performance of microbial fuel cells for sulfide and vanadium (V) treatment. Bioprocess Biosyst Eng 33:187–194CrossRefGoogle Scholar
  36. 36.
    Huang L, Guo R, Jiang L et al (2013) Cobalt leaching from lithium cobalt oxide in microbial electrolysis cells. Chem Eng J 220:72–80CrossRefGoogle Scholar
  37. 37.
    Huang L, Li T, Liu C et al (2013) Synergetic interactions improve cobalt leaching from lithium cobalt oxide in microbial fuel cells. Bioresour Technol 128:539–546CrossRefGoogle Scholar
  38. 38.
    Liu Y, Shen J, Huang L et al (2013) Copper catalysis for enhancement of cobalt leaching and acid utilization efficiency in microbial fuel cells. J Hazard Mater 262:1–8CrossRefGoogle Scholar
  39. 39.
    Jiang L, Huang L, Sun Y (2014) Recovery of flakey cobalt from aqueous Co(II) with simultaneous hydrogen production in microbial electrolysis cells. Int J Hydrog Energy 39:654–663CrossRefGoogle Scholar
  40. 40.
    Wang Q, Huang L, Yu H et al (2015) Assessment of five different cathode materials for Co(II) reduction with simultaneous hydrogen evolution in microbial electrolysis cells. Int J Hydrog Energy 40(2015):184–196CrossRefGoogle Scholar
  41. 41.
    Huang L, Yao B, Wu D et al (2014) Complete cobalt recovery from lithium cobalt oxide in self-driven microbial fuel cell-microbial electrolysis cells systems. J Power Sources 259:54–64CrossRefGoogle Scholar
  42. 42.
    Qin B, Luo H, Liu G et al (2012) Nickel ion removal from wastewater using the microbial electrolysis cell. Bioresour Technol 121:458–461CrossRefGoogle Scholar
  43. 43.
    Fradler KR, Michie I, Dinsdale RM et al (2014) Augmenting microbial fuel cell power by coupling with supported liquid membrane permeation for zinc recovery. Water Res 55:115–125CrossRefGoogle Scholar
  44. 44.
    Zhang B, Feng C, Ni J et al (2012) Simultaneous reduction of vanadium (V) and chromium (VI) with enhanced energy recovery based on microbial fuel cell technology. J Power Sources 204:34–39CrossRefGoogle Scholar
  45. 45.
    Luo H, Liu G, Zhang R et al (2014) Heavy metal recovery combined with H2 production from artificial acid mine drainage using the microbial electrolysis cell. J Hazard Mater 270:153–159CrossRefGoogle Scholar
  46. 46.
    Choi C, Hu N, Lim B (2014) Cadmium recovery by coupling double microbial fuel cells. Bioresour Technol 170:361–369CrossRefGoogle Scholar
  47. 47.
    Abourached C, Catal T, Liu H (2014) Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production. Water Res 51:228–233CrossRefGoogle Scholar
  48. 48.
    Zhang Y, Yu L, Wu D et al (2015) Dependency of simultaneous Cr(VI), Cu(II) and Cd(II) reduction on the cathodes of microbial electrolysis cells self-driven by microbial fuel cells. J Power Sources 273:1103–1113CrossRefGoogle Scholar
  49. 49.
    Li M, Pan Y, Huang L et al (2017) Continuous flow operation with appropriately adjusting composites in influent for recovery of Cr(VI), Cu(II) and Cd(II) in self-driven MFC-MEC system. Environ Technol 38:615–628CrossRefGoogle Scholar
  50. 50.
    Wu D, Pan Y, Huang L et al (2015) Comparison of Co(II) reduction on three different cathodes of microbial electrolysis cells driven by Cu(II)-reduced microbial fuel cells under various cathode volume conditions. Chem Eng J 266:121–132CrossRefGoogle Scholar
  51. 51.
    Wu D, Pan Y, Huang L et al (2015) Complete separation of Cu(II), Co(II) and Li(I) using self-driven MFCs-MECs with stainless steel mesh cathodes under continuous flow conditions. Sep Purif Technol 147:114–124CrossRefGoogle Scholar
  52. 52.
    Wang Q, Huang L, Pan Y et al (2016) Cooperative cathode electrode and in situ deposited copper for subsequent enhanced Cd(II) removal and hydrogen evolution in bioelectrochemical systems. Bioresour Technol 200:565–571CrossRefGoogle Scholar
  53. 53.
    Huang L, Jiang L, Wang Q et al (2014) Cobalt recovery with simultaneous methane and acetate production in biocathode microbial electrolysis cells. Chem Eng J 253:281–290CrossRefGoogle Scholar
  54. 54.
    Tao H, Lei T, Shi G et al (2014) Removal of heavy metals from fly ash leachate using combined bioelectrochemical systems and electrolysis. J Hazard Mater 264:1–7CrossRefGoogle Scholar
  55. 55.
    Sun M, Sheng G, Zhang L et al (2008) An MEC-MR-coupled system for biohydrogen production from acetate. Environ Sci Technol 42:8095–8100CrossRefGoogle Scholar
  56. 56.
    Huang L, Li M, Pan Y et al (2017) Efficient W and Mo deposition and separation with simultaneous hydrogen production in stacked bioelectrochemical systems. Chem Eng J 327:584–596CrossRefGoogle Scholar
  57. 57.
    Ramabhadran RO, Mann JE, Waller SE et al (2013) New insights on photocatalytic H2 liberation from water using transition-metal oxides: lessons from cluster models of molybdenum and tungsten oxides. J Am Chem Soc 135:17039–17051CrossRefGoogle Scholar
  58. 58.
    Chen Q, Liu J, Liu Y et al (2013) Hydrogen production on TiO2 nanorod arrays cathode coupling with bio-anode with additional electricity generation. J Power Sources 238:345–349CrossRefGoogle Scholar
  59. 59.
    Kundu A, Sahu JN, Redzwan G et al (2013) An overview of cathode material and catalysts suitable for generating hydrogen in microbial electrolysis cell. Int J Hydrog Energy 38:1745–1757CrossRefGoogle Scholar
  60. 60.
    Ribot-Llobet E, Nam JY, Tokash JC et al (2013) Assessment of four different cathode materials at different initial pHs using unbuffered catholytes in microbial electrolysis cells. Int J Hydrog Energy 38:2951–2956CrossRefGoogle Scholar
  61. 61.
    Oh SE, Logan BE (2007) Voltage reversal during microbial fuel cell stack operation. J Power Sources 167:11–17CrossRefGoogle Scholar
  62. 62.
    Modin O, Fukushi K (2014) Development and testing of bioelectrochemical reactors converting wastewater organics into hydrogen peroxide. Water Sci Technol 69:1359–1372CrossRefGoogle Scholar
  63. 63.
    Kim Y, Hatzell MC, Hutchinson AJ et al (2011) Capturing power at higher voltages from arrays of microbial fuel cells without voltage reversal. Energy Environ Sci 4:4662–4667CrossRefGoogle Scholar
  64. 64.
    Huang L, Chai X, Quan X et al (2012) Reductive dechlorination and mineralization of pentachlorophenol in biocathode microbial fuel cells. Bioresour Technol 111:167–174CrossRefGoogle Scholar
  65. 65.
    Wang H, Ren Z (2013) A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol Adv 31:1796–1807CrossRefGoogle Scholar
  66. 66.
    Wang Q, Huang L, Quan X et al (2017) Preferable utilization of in-situ produced H2O2 rather than externally added for efficient deposition of tungsten and molybdenum in microbial fuel cells. Electrochim Acta 247C:880–890CrossRefGoogle Scholar
  67. 67.
    Huang L, Chai X, Cheng S et al (2011) Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation. Chem Eng J 166:652–661CrossRefGoogle Scholar
  68. 68.
    Huang L, Regan JM, Quan X (2011) Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresour Technol 102:316–323CrossRefGoogle Scholar
  69. 69.
    Gregory KB, Lovley DR (2005) Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ Sci Technol 39:8943–8947CrossRefGoogle Scholar
  70. 70.
    Hsu L, Masuda SA, Nealson KH et al (2012) Evaluation of microbial fuel cell Shewanella biocathodes for treatment of chromate contamination. RSC Adv 2:5844–5855CrossRefGoogle Scholar
  71. 71.
    Tandukar M, Huber SJ, Onodera T et al (2009) Biological chromium(VI) reduction in the cathode of a microbial fuel cell. Environ Sci Technol 43:8159–8165CrossRefGoogle Scholar
  72. 72.
    Huang L, Chen J, Quan X et al (2010) Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell. Bioprocess Biosyst Eng 33:937–945CrossRefGoogle Scholar
  73. 73.
    Huang L, Chai X, Chen G et al (2011) Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells. Environ Sci Technol 45:5025–5031CrossRefGoogle Scholar
  74. 74.
    De Windt W, Boon N, van den Bulcke J et al (2006) Biological control of the size and reactivity of catalytic Pd(0) produced by Shewanella oneidensis. Antonie Van Leeuwenhoek 90:377–389CrossRefGoogle Scholar
  75. 75.
    Tian LJ, Li WW, Zhu TT et al (2017) Directed biofabrication of nanoparticles through regulating extracellular electron transfer. J Am Chem Soc 139:12149–12152CrossRefGoogle Scholar
  76. 76.
    Xue H, Zhou P, Huang L et al (2017) Cathodic Cr(VI) reduction by electrochemically active bacteria sensed by fluorescent probe. Sensor Actuat B Chem 243:303–310CrossRefGoogle Scholar
  77. 77.
    Shen J, Huang L, Zhou P et al (2017) Correlation between circuital current, Cu(II) reduction and cellular electron transfer in EAB isolated from Cu(II)-reduced biocathodes of microbial fuel cells. Bioelectrochemistry 114:1–7CrossRefGoogle Scholar
  78. 78.
    Tao Y, Xue H, Huang L et al (2017) Fluorescent probe based subcellular distribution of Cu(II) ions in living electrotrophs isolated from Cu(II)-reduced biocathodes of microbial fuel cells. Bioresour Technol 225:316–325CrossRefGoogle Scholar
  79. 79.
    Huang L, Xue H, Zhou Q et al (2018) Imaging and distribution of Cd(II) ions in electrotrophs and its response to current and electron transfer inhibitor in microbial electrolysis cells. Sensor Actuat B Chem 255:244–254CrossRefGoogle Scholar
  80. 80.
    Catal T, Bermek H, Liu H (2009) Removal of selenite from wastewater using microbial fuel cells. Biotechnol Lett 31:1211–1216CrossRefGoogle Scholar
  81. 81.
    Huang L, Liu Y, Yu L et al (2015) A new clean approach for production of cobalt dihydroxide from aqueous Co(II) using oxygen-reducing biocathode microbial fuel cells. J Clean Prod 86:441–446CrossRefGoogle Scholar
  82. 82.
    Shen J, Sun Y, Huang L et al (2015) Microbial electrolysis cells with biocathodes and driven by microbial fuel cells for simultaneous enhanced Co(II) and Cu(II) removal. Front Environ Sci Eng 9:1084–1095CrossRefGoogle Scholar
  83. 83.
    Chen Y, Shen J, Huang L et al (2016) Enhanced Cd(II) removal with simultaneous hydrogen production in biocathode microbial electrolysis cells in the presence of acetate or NaHCO3. Int J Hydrog Energy 41:13368–13379CrossRefGoogle Scholar
  84. 84.
    Li Y, Wu Y, Puranik S et al (2014) Metals as electron acceptors in single-chamber microbial fuel cells. J Power Sources 269:430–439CrossRefGoogle Scholar
  85. 85.
    Huang L, Wang Q, Jiang L et al (2015) Adaptively evolving bacterial communities for complete and selective reduction of Cr(VI), Cu(II) and Cd(II) in biocathode bioelectrochemical systems. Environ Sci Technol 49:9914–9924CrossRefGoogle Scholar
  86. 86.
    Rosenbaum MA, Franks AE (2014) Microbial catalysis in bioelectrochemical technologies: status quo, challenges and perspectives. Appl Microbiol Biotechnol 98:509–518CrossRefGoogle Scholar
  87. 87.
    Stoodley P, De Beer D, Lappin-Scott HM (1997) Influence of electric fields and pH on biofilm structure as related to the bioelectric effect. Agent Chemother 41:1876–1879Google Scholar
  88. 88.
    Luo Q, Wang H, Zhang X et al (2005) Effect of direct electric current on the cell surface properties of phenol-degrading bacteria. Appl Environ Microbiol 71:423–427CrossRefGoogle Scholar
  89. 89.
    Liu J, Hua Z, Chen L et al (2014) Correlating microbial diversity patterns with geochemistry in an extreme and heterogeneous environment of mine tailings. Appl Environ Microbiol 80:3677–3686CrossRefGoogle Scholar
  90. 90.
    Strycharz SM, Glaven RH, Coppi MV et al (2011) Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. Bioelectrochemistry 80:142–150CrossRefGoogle Scholar
  91. 91.
    Richter K, Schicklberger M, Ge scher J (2012) Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration. Appl Environ Microbiol 78:913–921CrossRefGoogle Scholar
  92. 92.
    Kouzuma A, Hashimoto K, Watanabe K (2012) Roles of siderophore in manganese-oxide reduction by Shewanella oneidensis MR-1. FEMS Microbiol Lett 326:91–98CrossRefGoogle Scholar
  93. 93.
    Mao J, Wang L, Dou W et al (2007) Tuning the selectivity of two chemosensors to Fe(III) and Cr(III). Org Lett 9:4567–4570CrossRefGoogle Scholar
  94. 94.
    Zhao Y, Zhang X, Han Z et al (2009) Highly sensitive and selective colorimetric and off-on fluorescent chemosensor for Cu2+ in aqueous solution and living cells. Anal Chem 81:7022–7030CrossRefGoogle Scholar
  95. 95.
    Xu L, He MI, Yang HB et al (2013) A simple fluorescent probe for Cd2+ in aqueous solution with high selectivity and sensitivity. Dalton Trans 42:8218–8222CrossRefGoogle Scholar
  96. 96.
    Carlson HK, Iavarone AT, Gorur A et al (2012) Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by gram- positive bacteria. Proc Natl Acad Sci U S A 109:1702–1707CrossRefGoogle Scholar
  97. 97.
    Cologgi DL, Lampa-Pastirk S, Speers AM et al (2011) Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism. Proc Natl Acad Sci U S A 108:15248–15252CrossRefGoogle Scholar
  98. 98.
    Orellana R, Leavitt JJ, Comolli LR et al (2013) U(VI) reduction by diverse outer surface c-type cytochromes of Geobacter sulfurreducens. Appl Environ Microbiol 79:6369–6374CrossRefGoogle Scholar
  99. 99.
    Marshall MJ, Beliaev AS, Dohnalkova AC et al (2006) c-type cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis. PLoS Biol 4:e268CrossRefGoogle Scholar
  100. 100.
    Reguera G, McCarthy KD, Mehta T et al (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101CrossRefGoogle Scholar
  101. 101.
    Smith JA, Lovley DR, Tremblay PL (2013) Outer cell surface components essential for Fe(III) oxide reduction by Geobacter metallireducens. Appl Environ Microbiol 79:901–907CrossRefGoogle Scholar
  102. 102.
    Summers ZM, Fogarty HE, Leang C et al (2010) Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330:1413–1415CrossRefGoogle Scholar
  103. 103.
    Malvankar NS, Vargas M, Nevin KP et al (2011) Tunable metallic-like conductivity in microbial nanowire networks. Nat Nanotechnol 6:573–579CrossRefGoogle Scholar
  104. 104.
    Hao L, Li J, Kappler A et al (2013) Mapping of heavy metal ion sorption to cell-extracellular polymeric substance-mineral aggregates by using metal-selective fluorescent probes and confocal laser scanning microscopy. Appl Environ Microbiol 79:6524–6534CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and TechnologyDalian University of TechnologyDalianChina

Personalised recommendations